Advanced Search

Study Preview



Study Title and Description

Acute effects of caffeine and cigarette smoking on ventricular long-axis function in healthy subjects.



Key Questions Addressed
1 For [population], is caffeine intake above [exposure dose], compared to intakes [exposure dose] or less, associated with adverse effects on cardiovascular outcomes?
  • Comments Comments (
    0
    ) |

Primary Publication Information
  • Comments Comments (
    0
    ) |
TitleData
Title Acute effects of caffeine and cigarette smoking on ventricular long-axis function in healthy subjects.
Author E Giacomin,E Palmerini,P Ballo,V Zacà,G Bova,S Mondillo,
Country
Year 2008
Numbers

Secondary Publication Information
There are currently no secondary publications defined for this study.


Extraction Form: Cardiovascular Design
Design Details
Question... Follow Up Answer Follow-up Answer
What outcome is being evaluated in this paper? Cardiovascular
  • Comments Comments (
    0
    ) |
What is the objective of the study (as reported by the authors)? The aim of this study was to analyze the acute effects of caffeine assumption, cigarette smoking, or both, on left and right ventricular performance in a population of young healthy subjects.
  • Comments Comments (
    0
    ) |
Provide a general description of the methods as reported by the authors. Information should be extracted based on relevance to the SR (i.e., caffeine related methods) Study population: 45 healthy subjects underwent echocardiography: 15 were non-smokers and habitual coffee drinkers (group 1); 15 were smokers and not habitual coffee consumers (group 2), and 15 were smokers and habitual coffee consumers (group 3). A control group of 10 non-smokers and non-habitual coffee drinkers were used as controls. Cardiac measurements: All subjects were asked to abstain from smoking, coffee, and other foods or beverages containing caffeine (e.g., tea, cola, cacao, guarana) for a wash-out period of at least 12 hours before examinations. Baseline systolic blood pressure, diastolic blood pressure, and heart rate were measured after 5 minutes of resting in the supine position, using standard procedures. Arterial oxygen saturation was also measured using a digital pulse oximeter. Cardiac measurements were performed at baseline and after oral assumption of caffeine 100 mg in group 1, one cigarette smoking in group 2, and both in group 3. Caffeine assumption and cigarette smoking: At the end of baseline evaluation, subjects in group 1 were asked to assume caffeine 100 mg administered orally (galenic preparation solved in 40 ml of water), a dosage that is equivalent to that of an express coffee. Subjects in group 2 were asked to smoke one cigarette in 5 minutes. Subjects in group 3 were asked to assume caffeine 100 mg per os, to wait for 30 minutes, and then to smoke one cigarette in 5 minutes. A second clinical and echocardiographic examination was performed after a total of 45 minutes from caffeine assumption in group 1, after 15 minutes from beginning of cigarette smoking in group 2, and after 45 minutes from caffeine assumption (i.e., 15 minutes from beginning of cigarette smoking) in group 3. During these periods, patients were asked to rest quiet in the sitting position. The second examination included measurement of systolic blood pressure, diastolic blood pressure, heart rate, arterial oxygen saturation, mitral inflow indices, mitral annulus velocities and AVPD averaged over four annular sites, lateral tricuspid annulus velocities, and TAPSE.
  • Comments Comments (
    0
    ) |
How many outcome-specific endpoints are evaluated? 6
  • Comments Comments (
    0
    ) |
What is the (or one of the) endpoint(s) evaluated? (Each endpoint listed separately) Blood pressure (systolic and diastolic)
  • Comments Comments (
    0
    ) |
List additional health endpoints (separately). 2 Heart rate
  • Comments Comments (
    0
    ) |
List additional health endpoints (separately).3 Left and right ventricular function
  • Comments Comments (
    0
    ) |
List additional health endpoints (separately).4 Peak early systolic (E) velocity; Peak late diastolic (A) systolic velocity; E/A ratio.
  • Comments Comments (
    0
    ) |
List additional health endpoints (separately).5 Deceleration time
  • Comments Comments (
    0
    ) |
List additional health endpoints (separately).6 Isovolumic relaxation time (IVRT)
  • Comments Comments (
    0
    ) |
Clinical, physiological, other Physiological
  • Comments Comments (
    0
    ) |
What is the study design? Controlled Trial
  • Comments Comments (
    0
    ) |
Randomized or Non-Randomized? NCT
  • Comments Comments (
    0
    ) |
What were the diagnostics or methods used to measure the outcome? Objective
  • Comments Comments (
    0
    ) |
Optional: Name of Method or short description Echocardiographic examinations were performed using high-quality machines (Vivid 7, GE, USA) equipped with 2.5 MHz probes. LV diameters and thicknesses, LV mass, end-diastolic LV relative wall thickness, end-diastolic RV diameter were determined in accordance with current ASE recommendations [20]. LV volumes, stroke volume, and ejection fraction were measured using the biplane modified Simpson's method. Left atrial volume was obtained from apical views using the biplane method of discs. Pulsed Doppler interrogation of mitral inflow was performed to measure peak early diastolic velocity (E), peak late diastolic velocity (A), their ratio E/A, E wave deceleration time, and isovolumic relaxation time. Mitral annulus velocities were measured using pulsed Tissue Doppler by positioning a 5 mm-sample volume at the level of septal, lateral, inferior and anterior annulus, in accordance with current ASE recommendations. Pulsed Tissue Doppler imaging of the lateral tricuspid annulus was also performed, and peak systolic, early diastolic, and late diastolic velocities were measured. Two-dimensionally guided M-mode imaging of septal, lateral, inferior, and anterior mitral annulus motion was performed from the apical 4- chamber view, using the zoom function. Total amplitude of systolic annular excursion was measured from the nadir of M-mode profile – corresponding to the point furthest from LV apex – to the point of maximal excursion towards LV apex [25]. Left atrioventricular plane displacement (AVPD) was determined by averaging excursion amplitudes recorded at the four annular sites. Tricuspid annular plane systolic excursion (TAPSE) was also measured using two-dimensionally guided M-mode imaging from the apical 4-chamber view. For both Tissue Doppler and M-mode imaging, careful alignment of the ultrasonic beam with annular motion was obtained.
  • Comments Comments (
    0
    ) |
Caffeine (general) Caffeine (general)
  • Comments Comments (
    0
    ) |
Coffee, Chocolate, energy drink, gum, medicine/supplement, soda, tea, other?
  • Comments Comments (
    0
    ) |
Measured or self reported? Measured
  • Comments Comments (
    0
    ) |
Children, adolescents, adults, or pregnant included? Adults
  • Comments Comments (
    0
    ) |
What was the reference, comparison, or control group(s)? (e.g. high vs low consumption, number of cups, etc.) Control group was non-smoking non-habitual coffee consumers.
  • Comments Comments (
    0
    ) |
What were the listed confounders or modifying factors as stated by the authors? (e.g. multi-variable components of models.  Copy from methods) Between-group comparisons at baseline were performed using the Kruskal-Wallis test for continuous variables and the chi-square test for categorical variables. Within-group comparisons between baseline values and those obtained after caffeine assumption, cigarette smoking, or both were performed using the Student t test for paired samples. Repeated measures two-way ANOVA was also performed by considering groups and status (i.e., baseline or after testing) as the main variables within a 3 Å~ 2 factorial design, using a mixed model adjusting for heart rate, systolic blood pressure, and diastolic blood pressure. The P value for the main effect of status was used to express the significance of the effect of caffeine and smoking on ventricular function in the overall population, whereas the interaction P value was considered to explore for differences in the effect of testing across groups.
  • Comments Comments (
    0
    ) |
What conflicts of interest were reported? The author(s) declare that they have no competing interests.
  • Comments Comments (
    0
    ) |
Refid 18318902
  • Comments Comments (
    0
    ) |
What were the sources of funding? No information provided.
  • Comments Comments (
    0
    ) |




Results & Comparisons

No Results found.